$$\frac{\S 5.5 \text{ Higher Devivatives}}{\text{One can define higher derivatives iteratively.}}$$

$$\frac{\S 5.5 \text{ Higher Devivatives}}{\text{Ore can define higher derivatives iteratively.}}$$

$$\frac{P(1) \text{ Period of S.3:}}{P(1) \text{ Fis called "m-times differentiable "on }\Omega, \text{ if }f \text{ is (m-1)-times differentiable with (m-1)-the derivative } p^{(m-1)} \text{ differentiable with (m-1)-the derivative } p^{(m-1)} \text{ differentiable}.$$

$$P(1) = \frac{df^{(m-1)}}{dx} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m} : \Omega \rightarrow \mathbb{R}$$

$$P(1) = \frac{df^{(m-1)}}{dx^m} = \frac{d^m f}{dx^m}$$

Example 5.15:
The functions exp, sin, cos, polynomials
and rational functions are in
$$\mathbb{C}^{m}$$
 for
each $m \in \mathbb{N}$.
Zet now $\Omega = (a,b), -\infty < a < b < \infty$, and
 $m \in \mathbb{N}$.
Proposition 5.11 (Taylor-formula):
Zet $f \in \mathbb{C}^{m-1}([a,b])$ on (a,b) m -times differentiable
Then there exists $\xi \in (a,b)$ such that
 $f(b) = f(a) + f'(a)(b-a) + f''(a) \frac{(b-a)^{2}}{2} + \cdots + f^{(m-1)}(a) \frac{(b-a)^{m-1}}{(m-1)!} + f^{(m)}(\overline{z}) \frac{(b-a)^{m}}{m!}$

 $\frac{Proof}{We \ can \ trace \ the \ Proposition \ to \ the \ mean}$ $We \ can \ trace \ the \ Proposition \ to \ the \ mean}$ $value \ theorem, \ namely \ Prop. \ 5.9.$ $Consider \ the \ function$ $g(x) = f(x) + f'(x) (b - x) + \dots$ $(*) \qquad \qquad + f^{(m-i)}(x) \frac{(b-x)^{m-1}}{(m-1)!} + K \frac{(b-x)^m}{m!} - f(b),$

where
$$K \in \mathbb{R}$$
 is chosen such that $g(a)=g(b)=0$.
According to assumptions on f, g is continuous
on $[a, b]$, and differentiable on (a, b) .
Then Prop. $5.9 \Longrightarrow \exists \xi \in (a, b): g'(\xi)=0$
That is

$$O = f'(\bar{z}) + (f''(\bar{z})(b-\bar{z}) - f'(\bar{z})) + (f''(\bar{z})(\underline{b-\bar{z}})^2 - f''(\bar{z})(b-\bar{z})) + \cdots + (f^{(m)}(\bar{z})(\underline{b-\bar{z}})^{m-1} - f^{(m-1)}(\bar{z})(\underline{b-\bar{z}})^{m-2}) - K (\underline{b-\bar{z}})^{m-1}$$

$$= (f^{(m)}(\frac{1}{2}) - K) \frac{(b-\frac{3}{2})^{m-1}}{(m-1)!},$$

as all other terms cancel pairwise. As

$$b-3>0$$
, we get $K = f^{(m)}(3)$, and with
 $g(a) = 0$ the claim follows after setting
 $x=a$ in $(*)$.

$$\frac{\text{Remark 5.5}}{\text{The tangent at } f \in C'([a,b]) \text{ in the point } x=a,}$$

$$T_i f(x_ia) = f(a) + f'(a)(x-a),$$

the approximating parabola for
$$f \in C^{2}([a,b])$$
,
 $T_{1} f(x; a) = f(a) + f'(a)(x-a) + f''(a)\frac{(x-a)^{2}}{2}$,
and more generally the taylor polynomial
of m-th degree for $f \in C^{\infty}([a,b])$,
 $T_{m} f(x; a) = f(a) + f'(a)(x-a) + \dots + f^{(m)}(a)\frac{(x-a)^{m}}{m!}$,
have according to Prop. 5.11 the following
opproximating property. For $a < x < b$ we have
 $f(x) - T_{m} f(x; a) = (f^{(m)}(\overline{s}) - f^{(m)}(a)) \cdot \frac{(x-a)^{m}}{m!}$
 $=: V_{m} f(x; a)$

for some
$$i \in (a, b)$$
. For the remainder term
 $m f$ we obtain the following
 $|mf(x, a)| \leq \sup_{a < \frac{1}{2} < x} |f^{(m)}(\overline{r}) - f^{(m)}(a)|_{m!}^{(x-a)^m}$
If $f \in C^{m+1}$, we can improve this through
Prop. 5.9:

 $|r_m f(x,a)| \leq \sup_{a < i < x} |f^{(m+i)}(i)| \frac{(x-a)^{m+i}}{m!}$

Example 5.14:
What is the sine of
$$47^{\circ} \equiv \frac{\pi}{4} + \frac{2\pi}{180}$$
?
Using $\sin' = \cos$, $\sin'' = \cos' = -\sin$, etc., we
obtain from the above remark when
choosing $m = 2$ the approximation:
 $\sin\left(\frac{\pi}{4} + \frac{\pi}{90}\right) = \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) \frac{\pi}{90} - \sin\left(\frac{\pi}{4}\right) \frac{\pi^2}{70^2} + r_2$
 $= \frac{12}{2} + \frac{12}{2} \frac{\pi}{90} - \frac{12}{2} \cdot \frac{\pi^2}{2\cdot90^2} + r_2$

where

$$|V_{2}| \leq \frac{\pi^{3}}{2.90^{3}} \approx 10^{-5}$$

$$\frac{Remark 5.6:}{\text{The Taylor-series of a function f does not}}$$

$$\frac{Remark 5.6:}{\text{recessarily converge against f.}}$$

$$(on sider for example the function f: R \rightarrow R$$

$$f(x) := \begin{cases} e^{-Vx^{2}}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

$$f(x) := \begin{cases} e^{-Vx^{2}}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

$$This function comes very close to the x-axis even for non-zero x:$$

$$0 < f(x) < 10^{-10} \text{ for } 0 < |x| \le 0.2$$

$$In \text{ fact, we have for the n-th derivative:}:$$

$$f^{(n)}(x) = \begin{cases} P_{n}(\frac{1}{x})e^{-Vx^{2}}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

where
$$p_n$$
 is some polynomial.
Proof:
Use induction:
 $\frac{h=0}{2}$; clear $(p_o=1)$
 $\frac{n \rightarrow n+1}{2}$;
i) for $x \neq 0$ we have
 $f^{(n+1)}(x) = \frac{d}{dx} f^{(n)}(x) = \frac{d}{dx} (p_n(\frac{1}{x})e^{-\frac{1}{x^2}})$
 $= (-p'_n(\frac{1}{x})\frac{1}{x^1} + 2p_n(\frac{1}{x})\frac{1}{x^3})e^{-\frac{1}{x^2}}$
Choose $p_{nt1}(t) := -p'_n(t)t^1 + 2p_n(t)t^3$.
ii) For $x = 0$ we have
 $f^{(n+1)}(0) = \lim_{x \rightarrow 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x} = \lim_{x \rightarrow 0} \frac{p_n(\frac{1}{x})e^{-\frac{1}{x^2}}}{x}$
 $= \lim_{R \rightarrow t \neq 0} Rp_n(R)e^{-R^2} = 0$
Thus we see that the Taylor-series of
f at $x_o = 0$ is identical to zero although
 $f = 0$ only at $x = 0$.

$$\frac{E \times a \times nple 5.15}{For 0 \le x \le 1} (logani + lnm);$$
For $0 \le x \le 1$ the Taylor-series of $log(1+x)$
converges and we have:
 $log(1+x) = x - \frac{x^{\lambda}}{2} + \frac{x^{\gamma}}{3} \mp \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}$

$$\frac{Proof:}{log'(1+x)}\Big|_{x=0} = \frac{1}{1+x}\Big|_{x=0} = 1$$
 $log''(1+x)\Big|_{x=0} = \frac{1}{l+x}\Big|_{x=0} = -\frac{1}{(1+x)^{2}}\Big|_{x=0} = -1$
 i
 $log''(1+x)\Big|_{x=0} = \frac{1}{dx}(\frac{1}{1+x})\Big|_{x=0} = -\frac{1}{(1+x)^{2}}\Big|_{x=0} = (-1)^{n-1}(n-1)!$
 $Prop. 511 \Longrightarrow log(1+x)$
 $= \sum_{n=1}^{N} \frac{(-1)^{n-1}}{n} x^{n} + \frac{log^{(N+1)}(\frac{5}{2})}{(1+\frac{5}{2})^{N+1}}$
 $= \sum_{n=1}^{N} \frac{(-1)^{n-1}}{n} x^{n} + \frac{(-1)^{N}}{(1+\frac{5}{2})^{N+1}}$
for some $\frac{5}{5} \in (1, x)$
 $E \times n^{N} \log(1+x; 0)$
 $\frac{1}{N+1} \longrightarrow 0 (N \rightarrow \infty)$

Zet
$$\Omega \subset \mathbb{R}$$
 be open, $f: \Omega \longrightarrow \mathbb{R}$.
Definition 5.4:
A point $x_0 \in \Omega$ is called a (strict) "local
minimum" of f , if in a neighborhood U
of x_0 we have
 $\forall x \in U : f(x) \ge f(x_0)$,
(or $\forall x \in U \setminus \{x_0\} : f(x) > f(x_0)$).
If f is differentiable at a local minimum x_0 ,
then we have following the proof of Prop.57
 $0 \le \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \le 0$
 $\Longrightarrow f'(x_0) = 0$. More generally, we have the
following
 $\frac{Coollary 5.3:}{Zet f \in C^m(\Omega)}, x_0 \in \Omega$ with $f'(x_0) = \cdots = f^{(m)}(x_0) = 0$
i) If $m = 2K + 1$, x_0 local minimum, then $f^{(m)}(x_0) > 0$, then x_0 is
strict local minimum.

Proof:
According to Prop. 5.11 there exists for

$$x \in \Omega$$
 close to x_0 a i between x and x_0
such that
 $f(x) = f(x_0) + f^{(m)}(i) \frac{(x-x_0)^m}{m!}$.
i) If $m = 2K+1$, and if x_0 is local minimum,
then we get
 $f^{(m)}(x_0) = \lim_{i \to \infty} f^{(m)}(i) = \begin{cases} m! \lim_{x \to x_0} \frac{f(x) - f(x_0)}{(x - x_0)^m} \ge 0 \\ m! \lim_{x \to x_0} \frac{f(x) - f(x_0)}{(x - x_0)^m} \le 0 \end{cases}$
 $\Longrightarrow f^{(m)}(x_0) = 0.$
ii) For $m = 2K$, $x \neq x_0$ we have $(x - x_0)^m \ge 0$.
If $f^{(m)}(x_0) = \lim_{i \to \infty} f^{(m)}(i) \ge 0$, then $f(x) - f(x_0)$
for $x \neq x_0$ close to x_0 ; thus x_0 is strict
local minimum.
Example 5.16:

i) Let
$$f(x) = x^4 - x^2 + 1$$
, $x \in \mathbb{R}$. According Carollary
5.3 i) for having an extremum at x_0 , we
need $f'(x_0) = 4x_0^3 - 2x_0 = 2(2x_0^2 - 1)x_0 = 0$;

that is

$$x_{o} \in \left\{-\frac{1}{12}, 0, \frac{1}{12}\right\}.$$
According to Carollary 5.3 ii) and with

$$f''(x) = 12 x^{2} - 2 = \left\{\frac{4 > 0}{> 0}, x = \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{12}}, \frac{1}{\sqrt{-2} < 0}, x = 0\right\}$$
we have strict local minima at $x_{o} = \frac{1}{\sqrt{12}}$, and a strict local maximum at $x_{o} = 0$.
ii) Zet $a_{1}, \dots, a_{n} \in \mathbb{R}$. We want to find the
"least square" - approximation $x_{o} \in \mathbb{R}$ of
 $(a_{i})_{1 \leq i \leq n}$ with

$$f(x_{o}) = \sum_{k=1}^{n} (x_{o} - a_{k})^{2} = \min_{x} f(x).$$
Notice $f(x) \longrightarrow \infty$ $(|x| \rightarrow \infty)$; thus there
exists $a x_{o} \in \mathbb{R}$ with $f(x_{o}) = \min_{x} f(x)$.
Corollary 5.3 i) gives the necessary
condition : $f'(x_{o}) = 2 \sum_{k=1}^{n} (x_{o} - a_{k}) = 2nx_{o} - 2 \sum_{k=1}^{n} a_{k} \infty$