§5.5 Higher Derivatives
One can define higher derivatives iteratively. Let $m \in \mathbb{N}$.
Definition 5.3:
i) f is called "m-times differentiable" on Ω, if f is $(m-1)$-times differentiable with $(m-1)$-th derivative $f^{(m-1)}$ differentiable.
In this case

$$
f^{(m)}=\frac{d f^{(m-1)}}{d x}=\frac{d^{m} f}{d x^{m}}: \Omega \rightarrow \mathbb{R}
$$

is called the "m-th derivative" of f.
Note: $f^{(0)}$ is just the function f itself.
ii) f is of the class $\iota^{m}(\Omega)$, if f is m-times differentiable and if the functions $f=f^{(0)}$, $f^{\prime}=f^{(1)}, \ldots, f^{(m)}$ are continuous.
Notation:
$\tau^{m}(\Omega, \mathbb{R})=\{f: \Omega \rightarrow \mathbb{R} \mid f$ is m-times diff., $f, \ldots, f^{(m)}$ continuous $\}$

Example 5.15:
The functions exp, sin, cos, polynomials and rational functions are in φ^{m} for each $m \in \mathbb{N}$.

Let now $\Omega=(a, b),-\infty<a<b<\infty$, and $m \in \mathbb{N}$.
Proposition 5.11 (Taylor-formula):
Let $f \in C^{m-1}([a, b])$ an (a, b) m-times differentiable. Then there exists $\xi \in(a, b)$ such that

$$
\begin{aligned}
f(b)= & f(a)+f^{\prime}(a)(b-a)+f^{\prime \prime}(a) \frac{(b-a)^{2}}{2}+\cdots \\
& \cdots+f^{(m-1)}(a) \frac{(b-a)^{m-1}}{(m-1)!}+f^{(m)}(\xi) \frac{(b-a)^{m}}{m!}
\end{aligned}
$$

Proof:
We can trace the Proposition to the mean value theorem, namely Prop. 5.9.
Consider the function

$$
\begin{align*}
g(x)=f(x) & +f^{\prime}(x)(b-x)+\ldots \\
& +f^{(m-1)}(x) \frac{(b-x)^{m-1}}{(m-1)!}+\frac{k(b-x)^{m}}{m!}-f(b), \tag{*}
\end{align*}
$$

where $K \in \mathbb{R}$ is chosen such that $g(a)=g(b)=0$.
According to assumptions on $f_{1} g$ is continuous on $[a, b]$, and differentiable an (a, b).
Then Prop. $5.9 \Rightarrow \exists \xi \in(a, b): g^{\prime}(\xi)=0$
That is

$$
\begin{aligned}
0 & =f^{\prime}(\xi)+\left(f^{\prime \prime}(\xi)(b-\xi)-f^{\prime}(\xi)\right) \\
& +\left(f^{\prime \prime}(\xi) \frac{(b-\xi)^{2}}{2}-f^{\prime \prime}(\xi)(b-\xi)\right)+\cdots \\
& +\left(f^{(m)}(\xi) \frac{(b-\xi)^{m-1}}{(m-1)!}-f^{(m-1)}(\xi) \frac{(b-\xi)^{m-2}}{(m-2)!}\right) \\
& -K \frac{(b-\xi)^{m-1}}{(m-1)!} \\
& =\left(f^{(m)}(\xi)-K\right) \frac{(b-\xi)^{m-1}}{(m-1)!}
\end{aligned}
$$

as all other terms cancel pairwise. As $b-\xi>0$, we get $K=f^{(m)}(\xi)$, and with $g(a)=0$ the claim follows after setting $x=a$ in (*).

Remark 5.5:
The tangent at $f \in C^{\prime}([a, b])$ in the point $x=a$,

$$
T_{1} f(x, a)=f(a)+f^{\prime}(a)(x-a)
$$

the approximating parabola for $f \in C^{2}([a, b])$,

$$
T_{2} f(x ; a)=f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2},
$$

and more generally the taylor polynomial of m-th degree for $f \in \succ^{m}([a, b])$,

$$
\operatorname{Tm} f(x ; a)=f(a)+f^{\prime}(a)(x-a)+\cdots+f^{(m)}(a) \frac{(x-a)^{m}}{m!},
$$

have according to Prop. 5.11 the following approximating property. For $a<x<b$ we have

$$
\begin{aligned}
f(x)-T_{m} f\left(x_{i} a\right) & =\left(f^{(m)}(\xi)-f^{(m)}(a)\right) \cdot \frac{(x-a)^{m}}{m!} \\
& =\operatorname{rrm}_{m}(x ; a)
\end{aligned}
$$

for some $\xi \in(a, b)$. Fa the remainder term $r_{m} f$ we obtain the following

$$
\left|r_{m} f(x ; a)\right| \leqslant \sup _{a<\xi<x}\left|f^{(m)}(\xi)-f^{(m)}(a)\right| \frac{(x-a)^{m}}{m!}
$$

If $f \in C^{m+1}$, we can improve this through Prop. 5.9:

$$
\left|r_{m} f\left(x_{i} a\right)\right| \leqslant \sup _{a<\xi<x}\left|f^{(m+1)}(\xi)\right| \frac{(x-a)^{m+1}}{m!}
$$

Example 5.14:
What is the sine of $47^{\circ} \cong \frac{\pi}{4}+\frac{2 \pi}{180}$?
Using $\sin ^{\prime}=\cos$, $\sin ^{\prime \prime}=\cos ^{\prime}=-\sin$, etc., we obtain from the above remark when choosing $m=2$ the approximation:

$$
\begin{aligned}
\sin \left(\frac{\pi}{4}+\frac{\pi}{90}\right) & =\sin \left(\frac{\pi}{4}\right)+\cos \left(\frac{\pi}{4}\right) \frac{\pi}{90}-\sin \left(\frac{\pi}{4}\right) \frac{\pi^{2}}{90^{2}}+r_{2} \\
& =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \frac{\pi}{90}-\frac{\sqrt{2}}{2} \cdot \frac{\pi^{2}}{2.90^{2}}+r_{2},
\end{aligned}
$$

where

$$
\left|r_{2}\right| \leq \frac{\pi^{3}}{2.90^{3}} \approx 10^{-5} .
$$

Remark 5.6:
The Taylar-series of a function f does not necessarily converge against f.
Consider for example the function $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x):= \begin{cases}e^{-1 / x^{2}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

This function comes very close to the x-axis even for non-zero x :

$$
0<f(x)<10^{-10} \text { for } 0<|x| \leqslant 0.2
$$

In fact, we have for the nth derivative:

$$
f^{(n)}(x)= \begin{cases}\operatorname{Pn}_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

where p_{n} is some polynomial.
Proof:
Use induction:

- $n=0$: clear $\left(p_{0}=1\right)$
- $n \rightarrow n+1$:
i) for $x \neq 0$ we have

$$
\begin{aligned}
f^{(n+1)}(x) & =\frac{d}{d x} f^{(n)}(x)=\frac{d}{d x}\left(p_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}\right) \\
& =\left(-p_{n}^{\prime}\left(\frac{1}{x}\right) \frac{1}{x^{2}}+2 p_{n}\left(\frac{1}{x}\right) \frac{1}{x^{3}}\right) e^{-1 / x^{2}}
\end{aligned}
$$

Choose $p_{n+1}(t):=-p_{n}^{\prime}(t) t^{2}+2 p_{n}(t) t^{3}$.
ii) For $x=0$ we have

$$
\begin{aligned}
f^{(n+1)}(0) & =\lim _{x \rightarrow 0} \frac{f^{(n)}(x)-f^{(n)}(0)}{x}=\lim _{x \rightarrow 0} \frac{p_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}}{x} \\
& =\lim _{R \rightarrow \pm \infty} R p_{n}(R) e^{-R^{2}}=0
\end{aligned}
$$

Thus we see that the Taylor-series of f at $x_{0}=0$ is identical to zero although $f=0$ ally at $x=0$.

Example 5.15 (logarithm):
For $0 \leq x \leq 1$ the Taylar-sevies of $\log (1+x)$
converges and we have:

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \mp \cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}
$$

Proof:

$$
\begin{aligned}
& \left.\log ^{\prime}(1+x)\right|_{x=0}=\left.\frac{1}{1+x}\right|_{x=0}=1 \\
& \left.\log { }^{\prime \prime}(1+x)\right|_{x=0}=\left.\frac{d}{d x}\left(\frac{1}{1+x}\right)\right|_{x=0}=-\left.\frac{1}{(1+x)^{2}}\right|_{x=0}=-1 \\
& \vdots \\
& \left.\log { }^{(n)}(1+x)\right|_{x=0}=\left.(-1)^{n-1}(n-1)!\frac{1}{(1+x)^{n}}\right|_{x=0}=(-1)^{n-1}(n-1)!
\end{aligned}
$$

Prop. $511 \Rightarrow \log (1+x)$

$$
\begin{aligned}
& =\sum_{n=1}^{N} \frac{(-1)^{n-1}}{n} x^{n}+\underbrace{\frac{\log (N+1)}{(-1)^{N} N!}(\xi)} \frac{x^{N+1}}{(1+\xi+1)!} \\
& =\sum_{n=1}^{N+1} \frac{(-1)^{n-1}}{n} x^{n}+\underbrace{\frac{(-1)^{N}}{N+1} \frac{x^{N+1}}{(1+\xi)^{N+1}}}_{=r_{N} \log \left(1+x_{i} 0\right)} \\
& \text { we } \xi \in(1, x)
\end{aligned}
$$

for some $\xi \in(1, x)$
But $\left|r_{N} \log \left(1+x_{i} 0\right)\right| \leqslant \frac{1}{N+1} \longrightarrow 0(N \rightarrow \infty)$

In fact, ane can show that the above series is convergent for $|x|<1$. Then are writes

$$
\begin{aligned}
& \log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \pm+\cdots \\
& \log (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\cdots
\end{aligned}
$$

subtraction gives

$$
\log \left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+--\right)=2 \sum_{k=0}^{\infty} \frac{x^{2 k+1}}{2 k+1}
$$

using $\left.\frac{1+x}{1-x}\right|_{x=\frac{1}{3}}=2$, we then get

$$
\log 2=2\left(\frac{1}{3}+\frac{1}{3 \cdot 3^{3}}+\frac{1}{5 \cdot 3^{5}}+\frac{1}{7 \cdot 3^{7}}+\cdots\right)
$$

\rightarrow gives an effective way to compute $\log 2$.

Let $\Omega \subset \mathbb{R}$ be open, $f: \Omega \rightarrow \mathbb{R}$.
Definition 5.4:
A point $x_{0} \in \Omega$ is called a (strict) "local minimum" of f, if in a neighborhood u of x_{0} we have

$$
\begin{gathered}
\forall x \in U: f(x) \geqslant f\left(x_{0}\right) \\
\left(\text { or } \forall x \in U \backslash\left\{x_{0}\right\}: f(x)>f\left(x_{0}\right)\right) .
\end{gathered}
$$

If f is differentiable at a local minimum x_{0}, then we have following the proof of Prop .5.9

$$
0 \leqslant \lim _{x \downarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right)=\lim _{x \uparrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \leqslant 0
$$

$\Rightarrow f^{\prime}\left(x_{0}\right)=0$. Mare generally, we have the following
Corollary 5.3:
Let $f \in C^{m}(\Omega), x_{0} \in \Omega$ with $f^{\prime}\left(x_{0}\right)=\cdots=f^{(m-1)}\left(x_{0}\right)=0$
i) If $m=2 k+1, x_{0}$ local minimum, then $f^{(m)}\left(x_{0}\right)=0$
ii) If $m=2 k$, and if $f^{(m)}\left(x_{0}\right)>0$, then x_{0} is strict local minimum.

Proof:
According to Prop. 5. 11 there exists for $x \in \Omega$ close to x_{0} a ξ between x and x_{0} such that

$$
f(x)=f\left(x_{0}\right)+f^{(m)}(\xi) \frac{\left(x-x_{0}\right)^{m}}{m!} .
$$

i) If $m=2 k+1$, and if x_{0} is local minimum, then we get

$$
\begin{aligned}
& f^{(m)}\left(x_{0}\right)=\lim _{\xi \rightarrow x_{0}} f^{(m)}(\xi)=\left\{\begin{array}{l}
m!\lim _{x \cup x_{0}} \frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)^{m}} \geqslant 0 \\
m!\lim _{x \uparrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{\left(x-x_{0}\right)^{m}} \leqslant 0
\end{array}\right. \\
& \Rightarrow f^{(m)}\left(x_{0}\right)=0 .
\end{aligned}
$$

ii) For $m=2 k, x_{\neq}$o we have $\left(x-x_{0}\right)^{m}>0$. If $f^{(m)}\left(x_{0}\right)=\lim _{\xi \rightarrow x_{0}} f^{(m)}(\xi)>0$, then $f(x)-f\left(x_{0}\right)$ for $x \neq x_{0}$ close to x_{0}; thus x_{0} is strict local minimum.

Example 5.16:
i) Let $f(x)=x^{4}-x^{2}+1, x \in \mathbb{R}$. According Corollary 5.3 i) for having an extremum at x_{0}, we need

$$
f^{\prime}\left(x_{0}\right)=4 x_{0}^{3}-2 x_{0}=2\left(2 x_{0}^{2}-1\right) x_{0}=0 ;
$$

that is

$$
x_{0} \in\left\{-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right\} .
$$

According to Corollary 5.3 ii) and with

$$
f^{\prime \prime}(x)=12 x^{2}-2= \begin{cases}4>0, & x= \pm 1 / \sqrt{2} \\ -2<0, & x=0\end{cases}
$$

we have strict local minima at $x_{0}=\frac{1}{\sqrt{2}}$ and at $x_{0}=-\frac{1}{\sqrt{2}}$, and a strict local maximum at $x_{0}=0$.
ii) Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$. We want to find the "least square" -approximation $x_{0} \in \mathbb{R}$ of $\left(a_{i}\right)_{1 \leqslant i \leqslant n}$ with

$$
f\left(x_{0}\right)=\sum_{k=1}^{n}\left(x_{0}-a_{k}\right)^{2}=\min _{x} f(x) .
$$

Notice $f(x) \longrightarrow \infty(|x| \longrightarrow \infty)$; thus there exists a $x_{0} \in \mathbb{R}$ with $f\left(x_{0}\right)=\min _{x} f(x)$.
Corollary 5.3 i) gives the necessary condition: $f^{\prime}\left(x_{0}\right)=2 \sum_{k=1}^{n}\left(x_{0}-a_{k}\right)=2 n x_{0}-2 \sum_{k=1}^{n} a_{k}=0$

$$
\Rightarrow x_{0}=\frac{1}{n} \sum_{k=1}^{n} a_{k}
$$

